Berikut ini disajikan beberapa contoh soal Sistem Persaman Linear Tiga Variabel untuk menambah pemahaman materi tersebut.
1. Ibu Yanti membeli 5 kg telur, 2 kg daging, dan 1 kg udang dengan harga Rp 305.000,00. Ibu Eka membeli 3 kg telur dan 1 kg daging dengan harga Rp 131.000,00. Ibu Putu membeli 3 kg daging dan 2 kg udang dengan harga Rp 360.000,00. Jika Ibu Aniza membeli 3 kg telur, 1 kg daging, dan 2 kg udang, berapah harga yang harus ia bayar?
Misal x = harga telur, y = harga daging, dan z = harga udang.
Jumlah harga belanjaan ibu Yanti Rp 305.000 sehingga diperoleh persamaan:
5x + 2y + z = 305000
Jumlah harga belanjaan ibu Eka Rp 131.000 sehingga diperoleh persamaan:
3x + y = 131000
Jumlah harga belanjaan ibu Putu Rp 360.000 sehingga diperoleh persamaan:
3y + 2z = 360000
Jumlah harga yang harus dibayar Ibu Aniza dapat ditulis dengan persamaan = 3x + y + 2z
Diperoleh SPLTV yakni:
5x + 2y + z = 305000 . . . . pers (1)
3x + y = 131000 . . . . pers (2)
3y + 2z = 360000 . . . . pers (3)
Adapun metode yang akan dipilih dalam menyelesaikan SPLTV yakni metode subtitusi.
Ubah persamaan 2 yakni:
3x + y = 131000
y = 131000 – 3x . . . . pers (4)
Substitusi persamaan 4 ke persamaan 1, maka:
5x + 2y + z = 305000
5x + 2(131000 – 3x) + z = 305000
5x + 262000 – 6x + z = 305000
– x + z = 43000
z = 43000 + x . . . . persamaan 5
Substitusi persamaan 5 ke persamaan 3, maka:
3y + 2z = 360000
3y + 2(43000 + x) = 360000
3y + 86000 + 2x = 360000
2x + 3y = 274000 . . . . pers (6)
Substitusi persamaan 4 ke persamaan 6, maka:
2x + 3y = 274000 . . . . pers (6)
2x + 3(131000 – 3x) = 274000
2x + 393000 – 9x = 274000
– 7x = – 119000
x = – 119000/–7
x = 17000
Substitusi nilai x ke persamaan 4 dan ke persamaan 5, maka:
y = 131000 – 3x
y = 131000 – 3(17000)
y = 80000
z = 43000 + x
z = 43000 + 17000
z = 60000
Jumlah harga yang harus dibayar ibu Aniza yakni:
Ibu Aniza = 3x + y + 2z
Ibu Aniza = 3(17000) + 80000 + 2(60000)
Ibu Aniza = 51000 + 80000 + 120000
Ibu Aniza = 251000
Jadi, harga yang harus Ibu Aniza bayar adalah sebesar Rp 251.000
2. Perhatikan persamaan berikut:
x+y+z=12
x−y−z=−52
x−2y−z=7
Nilai x adalah . . . .
Eliminasi yy dan zz pada persamaan (1)(1) dan (2)(2).
x+y+z=12
2x−y−z=−5 -
3x = -4
x = -4/3
Jadi, nilai x adalah -4/3
3. Menggunakan metode subtitusi, tentukanlah himpunan penyelesaian sistem persamaan linier tiga variabel (SPLTV) berikut ini.
x + y – z = –3
x + 2y + z = 7
2x + y + z = 4
nyatakan variabel x sebagai fungsi y dan z sebagai berikut.
x + y – z = –3
x = –3 – y + z
Subtitusikan peubah x ke dalam persamaan kedua
x + 2y + z = 7
(–3 – y + z) + 2y + z = 7
–3 + y + 2z = 7
y + 2z = 7 + 3
y + 2z = 10 Pers. (3)
Subtitusikan x ke dalam persamaan ketiga
2x + y + z = 4
2(–3 – y + z) + y + z = 4
–6 – 2y + 2z + y + z = 4
–y + 3z = 4 + 6
–y + 3z = 10 Pers. (4)
Persamaan (3) dan (4) membentuk SPLDV y dan z:
y + 2z = 10
–y + 3z = 10
Selanjutnya kita selesaikan SPLDV tersebut dengan metode subtitusi.
Subtitusikan y ke dalam persamaan kedua
–y + 3z = 10 ⇒ –(10 – 2z) + 3z = 10
–10 + 2z + 3z = 10
–10 + 5z = 10
5z = 10 + 10
5z = 20
z = 4
Subtitusikan nilai z = 4 ke salah satu SPLDV, misal y + 2z = 10 sehingga kita peroleh
y + 2z = 10
y + 2(4) = 10
y + 8 = 10
y = 10 – 8
y = 2
Selanjutnya, subtitusikan nilai y = 2 dan z = 4 ke salah satu SPLTV,
misal x + 2y + z = 7 sehingga kita peroleh
x + 2y + z = 7
x + 2(2) + 4 = 7
x + 4 + 4 = 7
x + 8 = 7
x = 7 – 8
x = –1
Dengan demikian, kita peroleh nilai x = –1, y = 2 dan z = 4. Sehingga himpunan penyelesaian dari SPLTV di atas adalah {(–1, 2, 4)}.
4. Tentukan penyelesaian SPLTV berikut ini:
2x + 5y – 3z = 3
6x + 8y -5z = 7
-3x + 3y + 4y = 15
Pembahasan:
2x + 5y – 3z = 3 … (1)
6x + 8y -5z = 7 … (2)
-3x + 3y + 4z = 15 … (3)
2x + 5y – 3z = 3 |×5| ⇔ 10x + 25y – 15z = 15
6x + 8y -5z = 7 |×3| ⇔ 18x + 24y -15z = 21 –
-8x + y = -6 … (4)
2x + 5y – 3z = 3 |×4| ⇔ 8x + 20y – 12z = 12
-3x + 3y + 4z = 15 |×3| ⇔-9x + 9y + 12z = 45 +
-x + 29y = 57 … (5)
-8x + y = -6 |×29| ⇔ -232x + 29y = -174
-x + 29y = 57 |×1| ⇔ -x + 29y = 57 –
-231x = -231
x = 1
-8x + y = -6
-8(1) + y = -6
-8 + y = -6
y = 8 – 6
y = 2
2x + 5y – 3z = 3
2(1) + 5(2) – 3z = 3
2 + 10 – 3z = 3
12 – 3z = 3
– 3z = 3 -12 = -9
z = -9/-3
z = 3
Jadi, himpunan penyelesaiannya adalah {(1, 2, 3)}
5. 3 bersaudara Lia, Ria, dan, Via berbelanja di toko buah. Mereka membeli Apel, Jambu, dan Mangga dengan hasil masing-masing sebagai berikut:
Lia membeli dua buah Apel, satu buah Jambu, dan satu buah Mangga seharga Rp47.000
Ria membeli satu buah Apel, dua buah Jambu, dan satu buah Mangga seharga Rp43.000
Via membelli tiga buah Apel, dua buah Jambu, dan satu buah Mangga seharga Rp71.000
Berapa harga 1 buah Apel, 1 buah Jambu, dan 1 buah Mangga?
Pembahasan:
Misal:
a = Harga 1 buah Apel
j = Harga 1 buah Jambu
m = Harga 1 buah Mangga
Maka, model matematikanya adalah
2a + j + m = 47.000 … (1)
a + 2j + m = 43.000 … (2)
3a + 2j + m = 71.000 … (3)
a + 2j + m = 43.000
3a + 2j + m = 71.000 –
-2a = -28.000
a = 14.000
2a + j + m = 47.000
a + 2j + m = 43.000 –
a – j = 4.000
j = a – 4.000
j = 14.000 – 4.000
j = 10.000
2a + j + m = 47.000
2(14.000) + 10.000 + m = 47.000
28.000 + 10.000 + m = 47.000
38.000 + m = 47.000
m = 47.000 – 38.000
m = 9.000
Jadi, harga 1 buah Apel adalah Rp14.000, 1 buah Jambu adalah Rp10.000, dan 1 buah Mangga adalah Rp9.000.