Matematika

Logaritma: Pengertian – Rumus dan Contoh Soal

√ Edu Passed Pass education quality & scientific checked by advisor, read our quality control guidelance for more info

Mempelajari matematika tidak akan bisa terlepas dari logaritma. Logaritma kini digunakan untuk memecahkan masalah.

Salah satu contohnya saat ini adalah dalam penggunaan teknologi. Tetapi, sebelum mempelajari logaritma, apakah kamu tahu apa itu logaritma dan bagaimana sejarahnya?

Pengertian Logaritma

Secara umum, logaritma adalah suatu kebalikan atau invers dari perpangkatan. berikut ini beberapa penjelasan logaritma menurut beberapa ahli.

Menurut Muhammad bin Musa al-Khawarizmi, logaritma adalah metode yang digunakan untuk menyelesaikan sebuah permasalahan dengan cara yang lebih mudah dipahami.

Menurut Donald E. Knuth, logaritma merupakan kumpulan aturan yang memberikan deretan operasi yang digunakan untuk menyelesaikan suatu masalah.

Menurut Rinaldi Munir, logaritma adalah  sebuah urutan langkah yang membantu seseorang dalam menyelsaikan masalah.

Sejarah Logaritma

Logaritma berasal dari kata algorismi, yang merupakan latinisasi dari nama penemunya, yaitu seorang ahli matematika, Muhammad bin Musa al-Khawarizmi (770-850).

Al Khawarizmi menerbitkan karyanya pertama kali dengan judul Al-Jam Wal-Tafriq bi Hisab Al-Hind.

Pada tahun 1612, John Napier (1550-1617) bersama Joost Burgi (1552-1632) menemukan sistem yang bernama logaritma.

Saat ini, temuannya tersebut lebih dikenal dengan sebutan logaritma Napier (Napier Logarithms).

Ahli matematika berkebangsaan inggris tersebut membuat table yang diukir pada gading yang kemudian disebut Naper’s Bones.

Butuh waktu sekitar 20 tahun bagi Napier untuk menemukan idenya dan menerbitkannya dalam sebuah karya berjudul Minifici Logarithmorum Canonis Descriptio tahun 1614.

Dengan adanya logaritma mereka mengerjakan perkalian dan pembagian yang sulit dengan cepat dan mudah.

Sifat-sifat Logaritma

Berikut ini sifat logaritma:

ª log a = 1
ª log 1 = 0
ª log aⁿ = n
ª log bⁿ = n • ª log b
ª log b • c = ª log b + ª log c
ª log b/c = ª log b – ª log c
ªˆⁿ log b m = m/n • ª log b
ª log b = 1 ÷ b log a
ª log b • b log c • c log d = ª log d
ª log b = c log b ÷ c log a

Sifat-sifat Persamaan Logaritma

  • Sifat logaritma perkalian

Suatu logaritma baru dihasilkan dari penjumlahan dua logaritma dengan nilai kedua numerusnya merupakan faktor dari nilai numerus awal.

  • Perkalian logaritma

Logaritma a dapat dikalikan logaritma b, jika nilai numerus logaritma a sama dengan bilangan pokok logaritma b.

hasil tersebut merupakan logaritma baru dengan nilai bilangan sama dengan logaritma a, dan nilai numerus sama dengan logaritma b.

  • Sifat pembagian

Suatu logaritma merupakan hasil pengurangan­ dua logaritma yang nilai kedua numerusnya adalah pecahan atau pembagian dari nilai munerus logaritma awal.

  • Sifat logaritma berbanding terbalik

Logaritma berbanding terbalik adalah saat logaritma lain memiliki nilai bilangan pokok dan numerusnya saling bertukar.

  • Logaritma berlawanan tanda

Sebuah sifat dimana sebuah logaritma mempunyai numerusnya yaitu pecahan terbalik dari nilai numerus logatitma awal.

  • Sifat perpangkatan

Sifat perpangkatan merupakan sifat dengan nilai numerusnya merupakan sebuah pangkat dan dapat dijadikan sebagai logaritma baru dengan mengeluarkan pangkatnya menjadi pengali.

  • Perpangkatan bilangan pokok logaritma

Perpangkatan bilangan pokok logaritma merupakan sifat dengan nilai bilangan pokoknya adalah pangkat yang dapat dijadikan logaritma baru dengan mengeluarkan pangkatnya menjadi pembagi.

  • Bilangan pokok logaritma sebanding dengan perpangkatan numerus

Bilangan pokok logaritma sebanding dengan perpangkatan numerus adalah sifat yang nilai numerusnya merupakan pangkat dari nilai bilangan pokoknya memiliki nilai hasil sama dengan nilai pangkat numerus tersebut.

  • Perpangkatan logaritma

Sifat perpangkatan logaritma merupakan sifat dengan bilanan yang memiliki pangkat berbentuk logaritma.

Hasil nilai pangkatnya adalah nilai dengan numerusnya berasal dari logarotma tersebut.

  • Mengubah basis logaritma

Suatu logaritma yang dapat dipecah menjadi perbandingan dua logaritma.

Fungsi logaritma

Fungsi logaritma merupakan invers fungsi eksponen. Berikut model kesetaraan sifat logaritma dengan eksponen

Sifat kesetaraan bisa menunjukan bahwa grafik fungsi a log x = y sebagai hasil cerminan terhadap garis y = x dari grafik fungsi eksponen y = a (pangkat) x.

Hubungan logaritma dengan eksponen ditulis seperti berikut

Daftar logaritma

Jauh sebelum ada komputer, menghitung angka yang rumit menggunakan tabel logaritma.

Cara menggunakan Daftar Logaritma

  • Ketahui basis terlebih dulu. Jika sudah langsung menuju angka sesuai basis.
  • Temukan perpotongan baris dan kolom yang sesuai. Sesuai contoh, maka menuju baris 31 kolom 6. Maka didapatkan nilai 0,4997
  • Sekarang lihatlah pada tabel yang memiliki kolom kecil. Lihat baris 31 kolom 3 (sesuai dengan satuan angka 63) = 0,4997+4=0,51
  • Mencari bilangan bulat. Gunakan rumus:

Cara menggunakan Daftar Anti Logaritma

  • Pisahkan karakterikstik dan mantissanya. Karakteristik adalah angka sebelum tanda titik desimal. Sedangkan mantissa adalah angka dibelakang titik desimal.
    Misal: 2.645
    Maka 2 adalah karakteristik dan 645 adalah mantissa.
  • Ketahui basisnya
  • Lalu hitunglah 10^x. Anti logaritmadari x apapun adalah basis^x. Perlu diketahui bahwa basis logaritma selalu 10.
    Jika mantissa 0 (jika angka dalam bilangan bulat). Kalikan saja 10 kali 10 beberapa kali.

Dalam contoh, anti logaritmanya adalah 10 x 2,6452. Yang apabila dihitung dengan kalkulator, maka hasilnya adalah 441,7.

Contoh Soal Logaritma

Jawab :

Cek basisnya terlebih dulu. Kedua persamaan di atas memiliki nilai basis yang sama, yaitu 2.

Gunakan sifat logaritma yang kedua untuk mendapatkan hasilnya.

Hasil 6 didapatkan dari 2 pangkat berapa yang menghasilkan 64.

Untuk soal ini tidak bisa langsung dikerjakan. Soal ini menggunakan sifat nomor 6.